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Abstract
The spherical limit of strongly commensurate dirty bosons is studied
perturbatively at weak disorder and numerically at strong disorder in two
dimensions (2D). We argue that disorder is not perfectly screened by
interactions and consequently that the ground state in the effective Anderson
localization problem always remains localized. As a result there is only a
gapped Mott insulator phase in the theory. Comparisons with other studies and
the parallel with disordered fermions in 2D are discussed. We conjecture that
while for the physical casesN = 2 (XY) andN = 1 (Ising) the theory should
have the ordered phase, it may not forN = 3 (Heisenberg).

PACS numbers: 05.30.Jp, 11.10.−z, 64.60.−i, 73.20.Jc, 73.20.Fz, 72.80.Ng

1. Introduction

The problem of interacting bosons in a random potential is a paradigmatic case of an interacting
disordered system and as such has attracted much attention throughout the years [1, 2].
Although in one version or another it has been used to describe numerous physical situations
[3], it has proven very difficult for theoretical analysis, since it inextricably combines the
effects of interactions and Anderson localization. Just like its fermionic cousin the metal–
insulator transition [4], the problem of dirty bosons seems to lack a simple analytic mean-field
theory around which to begin a systematic study. Most of the information on the dirty boson
quantum phase transitions therefore derives from numerical studies [5] and more recently from
an expansion around the lower critical dimension [6].

In this paper we will be concerned with a limited class of the dirty boson models at a
commensuratefilling and study the limit where the number of bosonic speciesN is large [7]. As
is well known in this limit the mean-field theory, or the saddle-point approximation, becomes
the exact solution. The quantum-mechanical action atT = 0 that defines our problem is

S [�] =
∫

dDx dτ

{
(∂τ�(x, τ ))2 + (∇�(x, τ ))2

+ (V (x)− µ)�2(x, τ ) +
λ

N
�4(x, τ )

}
(1)
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where�(x, τ ) is a realN-component bosonic field,�2 = ∑N
α=1�

2
α , andV (x) is a random

(in space) external potential. For simplicity, it will be assumed thatV (x) is uncorrelated, so
that〈V (x)V (y)〉 = Wδ(x − y). We will mostly be interested in two dimensions (D = 2), but
will leave a generalD in the action to comment later on results in other dimensions. Note that
disorder is assumed to be a random function only of spatial coordinates, while it is completely
correlated in (i.e. independent of ) imaginary time. This is what makes it much stronger than
in the corresponding problem in classical mechanics. The theory (1) forN = 2 describes the
superfluid order parameter in the Bose–Hubbard model, at a density of bosons commensurate
with the lattice [2]1, also known in the literature as the random-rod problem [8]. ForN = 3 the
theory may be used to describe disordered quantum rotors, i.e. the magnetic quantum phase
transitions in the Heisenberg universality class in the presence of quenched randomness [9].
WhenN = 1 the theory describes a random system with the Ising symmetry. In general the
action (1) provides a minimal description of the quantum disordered interacting system, and
for N = ∞ has been studied by renormalization group methods in the past [10, 11] with
conflicting results. The purpose of this paper is to shed some light on the physics implicit in
this model and, in particular, to argue that the model allows no superfluid phase inD = 2.

To see what is involved in solving the problem in the (spherical) limitN = ∞, perform
the standard Hubbard–Stratonovich transformation on the quartic term and integrate all but
one of the bosonic fields. This leaves one with the transformed action

Seff [χ,ψ] =
∫

dDx dτ

{
−N

4λ
χ2(x, τ ) + (∂τ�1(x, τ ))2

+ (∇�1(x, τ ))2 + (V (x) + χ(x, τ )− µ)�2
1(x, τ )

}
+

1

2
(N − 1) ln det

{
−∂2

τ − ∇2 + V (x) + χ(x, τ )− µ
}

(2)

which is just the original problem rewritten exactly. Assuming that the Hubbard–Stratonovich
field at the saddle point is independent of imaginary time,χ(x, τ ) = χ(x), and that
�1(x, τ ) = N1/2cφ0(x), the saddle-point equations become

χ(x) = λ
〈
x, τ

∣∣∣∣ 1

−∂2
τ − ∇2 + V (x) + χ(x)− µ

∣∣∣∣ x, τ
〉

+ c2φ2
0(x) (3)

ε0c = 0 (4)

whereφα(x) are the random eigenstates andεα the random eigenvalues of the susceptibility
matrix

(−∇2 + V (x) + χ(x)− µ)φα(x) = εαφα(x) (5)

with ε0 being the lowest eigenvalue. Equations (3)–(5) are completely standard and the only
novelty compared to the case without disorder [12] is the random spectrum instead of the
usual plane waves. In principle, one may expect to have two phases:ε0 �= 0 andc = 0,
corresponding to the gapped Mott insulator (MI), orε0 = 0 andc �= 0 which would represent
a superfluid (SF). The gapless insulating Bose-glass (BG) between the MI and the SF [2]
should in general be absent, as we argue below.

With V (x) = 0, the solutionχ(x) = χ0 is uniform and the model leads to the well-known
large-N critical behavior inD + 1 dimensions [12]. The correlation length exponent, for

1 More precisely, for commensurate dirty bosons the action contains an additional term linear in the time derivative
with a random coefficient with zero average. We neglect this additional disorder for simplicity.
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example, in the pure case isν = 1/(D − 1), and inD = 2 the Harris criterion [13] (which
says that disorder is irrelevant ifνD > 2) implies that disorder is preciselymarginal. When
V (x) �= 0, in the MI phase the saddle point equation (3), after integration over the frequency,
can be written in the basis{φα} as

χ(x) = λ
∑
α

φα(x)2√
εα
. (6)

The functionsφα are the eigenstates of thescreened, but nevertheless random, potential
V (x) + χ(x) and all would therefore naively be expected to be localized inD = 2 [7]. In
particular, for the localized ground state the first term in the sum in equation (6) becomes
large asε0 → 0 precisely in the region of localization, which by self-consistency implies that
χ(x) is also large there. This, on the other hand, then implies thatε0 is large, and not small
as assumed and one runs into a contradiction. Evidently, for the spectrum to extend all the
way to zero, the discrete sum in the last equation must be approximable by an integral so that
the infrared singularity becomes integrable. For this to occur the weight of each of the terms
corresponding to the low-energy states in equation (6) must vanish in the thermodynamic limit
as the inverse of the system size, which is tantamount to delocalization of the low-energy
eigenstates. Put differently, the collapse of the gap must be accompanied by the simultaneous
delocalization of the ground state, so that the gapless phase is necessarily a SF. There can be
no intermediate localized BG in the model atN = ∞.

With this picture in mind the appearance of the superfluid phase in the large-N model
in D = 2 appears rather counter-intuitive: although screening introduces correlations into
the effective random potential, the states should nevertheless always remain localized. In
the rest of the paper we first show that although the lowest order screening does reduce the
random potential, it does not make it completely smooth and consequently the MI gap cannot
close. This conclusion is further corroborated by the numerical solution of the self-consistent
equations on a lattice and absence of the finite-size scaling of the gap and the ground state
participation ratio. In the closing section we compare our result with other studies and
speculate on the implications for physical casesN = 1,2,3.

2. Weak-disorder expansion

For a given random configuration the self-consistent equations cannot be solved analytically
and one has to resort to numerical computations. For weak disorder, however, we can
expand the matrix element in (3) in powers of thescreened potential. To that end write
χ(x) = χ0 + χ1(x), where

∫
χ1(x)dDx = 0. The uniform partχ0 is just the renormalization

of the chemical potential, whilẽV (x) ≡ V (x) + χ1(x) is the screened potential, which should
vanish with vanishing randomness. Expanding the right hand side of (3) in the MI phase in
Ṽ (x) and taking the Fourier transform, we get (forq �= 0)

Ṽ (q) = V (q)− λ�(q)Ṽ (q) + λ
∫

dk I1(k, q)Ṽ (k)Ṽ (q − k)

− λ
∫

dk d l I2(k, l, q)Ṽ (k)Ṽ (l)Ṽ (q − k − l) + O(Ṽ 4
) (7)

where

�(q) ≡
∫

dp dωG0(ω, p)G0(ω, p + q) (8)

is the standard polarization bubble, and

I1(k, q) ≡
∫

dp dωG0(ω, p)G0(ω, p + k)G0(ω, p + q) (9)
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+ - + ...-=

Figure 1. Diagrammatic representation of equation (7). The heavy dashed line represents the self-
consistently screened random potential, while the thin dashed line is the bare random potential.

(a) (b) (c)

(d) (e)

Figure 2. Diagrams corresponding to the second-order terms in expansion (11).

and

I2(k, l, q) ≡
∫

d p dωG0(ω, p)G0(ω, p + k)G0(ω, p + k + l)G0(ω, p + q). (10)

The propagator for the clean case is given by G−1
0 (ω, p) = ω2 + p2 + "2, where

"2 ≡ χ0 − µ > 0 and is the MI gap. Equation (7) can be represented diagrammatically
as in figure 1.

We next introduce the two-point correlator W̃(q)δ(r) = 〈Ṽ (q)Ṽ (−q + r)〉, where 〈· · ·〉
represents disorder averaging as a measure of the screened disorder. From equation (7) it
follows that

W̃(q) {1 + λ�(q)}2 = W(q) + 2λ
∫

d k I1(k, q)〈V (−q)Ṽ (k)Ṽ (q − k)〉

− 2λ
∫

d k d l I2(k, l, q)〈V (−q)Ṽ (k)Ṽ (l)Ṽ (q − k − l)〉

+ λ2
∫

d k d k′ I1(k, q)I1(k′,−q)〈Ṽ (k)Ṽ (q − k)Ṽ (k′)Ṽ (−q − k′)〉
+ O(W 3). (11)

Diagrammatically, the second-order contributions may be represented as in figure 2. In
the appendix we compute the above averages in D = 2. Note that although the random
potential is assumed to be uncorrelated in space, the screened potential develops correlations
and W̃(q) becomes a non-trivial function of the wave vector. For low-energy states one expects
the localization properties to be determined by W̃ (q) at small q, so we focus on the limit q → 0
and denote W̃ (q → 0) = W̃ . To the second order in W in the limit "→ 0 and in D = 2 one
then finds (see the Appendix for details):

W̃ = W

λ2c2"
2 +

(
W

λ2c2

)2

"2

×
{

1

2π5

((
$

"

)2

+
32

π

(
$

"

))
+

4

π4

(
$

"

)
+ O

(
ln

(
$

"

))}
+O(W 3) (12)

where the constant c = 1/(8π) and $ is the ultraviolet cut-off implicit in (7).
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The last equation is our central result and several remarks are in order. To the first
order in W, one finds that as " → 0, W̃ → 0, which one may be tempted to interpret as
a sign of delocalization of the ground state. This is a consequence of the screening of the
random potential by the medium, which to the zeroth order in disorder is pure and thus screens
perfectly at q = 0. Also, recognizing the combination W̃/"2 as a dimensionless measure of
screened disorder, to the lowest order equation (12) agrees with the Harris criterion: disorder
is marginal in D = 2. The fate of disorder is therefore determined by the higher order terms
in the expansion. To the second order in disorder we find that

W̃ → $2

2π5

(
W

λ2c2

)2

, as "→ 0 (13)

i.e. goes to a non-universal finite constant as the gap decreases. If the bare disorder is weak the
screened disorder will be even weaker, but always finite. The consequence is that the ground
state and the excited states in D = 2 should remain localized [14] so that our qualitative
argument from the introduction would imply that the gap cannot close. This is in accordance
with the direct numerical solution at strong disorder to which we turn next.

3. Numerical solution

We begin by introducing a discrete version of our theory where the continuous variable x is
replaced by a lattice-site index i on a quadratic lattice of linear size L. The kinetic energy
term ∇2 is replaced by the nearest-neighbour hopping measured by t, the random potential
is chosen from a uniform distribution of width W and the interaction strength is given by λ.
In our calculations we set W/t = 4 and λ/t = 8, which correspond to strong disorder and
interactions. After the integration over frequency, the self-consistent equation (3) becomes

χi = λ
N∑
α=1

φα(i)
2

√
εα

(14)

on the {φα(i)} basis where these wave functions are now eigenvectors of the matrix∑
j

{−tij + (Vi + χi − µ) δi,j }φα(j) = εαφα(i) (15)

where tij is non-zero for nearest-neighbour i, j only.
We solve the set of L×L equations using the Newton–Raphson algorithm. We gradually

increase the chemical potential µ, using the last found solution as the initial guess at the next
µ. Finally, we average over many disorder configurations. Of course, for finite L the gap is
always finite, so to infer the result in the thermodynamic limit we make the standard finite-size
scaling ansatz for the average ground state energy

ε0 = L−zF
[
L

1
ν (µ− µc)

]
(16)

where z is the dynamical critical exponent, ν is the correlation length exponent and µc is the
critical point in the thermodynamic limit; F(x) is a universal scaling function. The values of
z and µc are determined by scaling the ε0-axis until all curves cross at a single point. The
exponent ν is found by scaling the µ-axis so that a reasonable collapse of all the data onto a
single curve is achieved.

Such an attempt of finite size scaling of our data is shown in figure 3 for systems of
linear size L = 6, 8, 10, 12. We display the result for the value z = 0.9, but the picture
remains qualitatively the same for all 0.5 < z < 1.0. The gap continuously decreases
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1.64 1.66 1.68 1.7 1.72 1.74 1.76 1.78

µ

2.8

2.9

3

3.1

3.2

3.3

L
z ε 0

L = 6
L = 8
L = 10
L = 12

Figure 3. Finite-size scaling attempt of the ground state energy ε0 with z = 0.9 demonstrating
the lack of transition in our numerical calculations. The disorder averaging was done over 500
configurations for L = 6, 1200 for L = 8, for L = 10 and 1000 for L = 10.

with µ, but the failure of finite-size scaling suggests that it does not vanish in the
thermodynamic limit.

We have also argued that at the point of collapse of the gap, the ground state would
be expected to become delocalized. A useful measure of the degree of localization of the
wavefunctions at a given energy is provided by the participation ratio

P(ε) =
∑
α

δ(εα − ε)

L2
L2∑
i=1

|φα(i)|4
(17)

which is proportional to 1/L2 for the localized states and approaches a constant for the
extended states. In the critical region, one expects the participation ratio to assume a similar
finite-size scaling form

P(ε0) = L−(D−Df).
[
L

1
ν (µ− µc)

]
(18)

where Df is the fractal dimension of the ground state wavefunction and .(x) another scaling
function. Our data for the participation ratio are shown in figure 4 for the sizes L = 8, 10, 12.
Again, attempts to find a common crossing point by tuningDf fail. We see that the participation
ratio of the ground state grows as µ increases, but conclude that the ground state nevertheless
seems to remain localized. This is consistent with the data for the ground state energy.

Our Newton–Raphson algorithm has difficulties converging as µ increases and the
problem becomes more non-linear. It is possible we simply have not been able to reach
the critical point in our numerical calculation. When taken together with the weak-disorder
expansion and the physical arguments, however, we believe a more likely interpretation is that
there is no SF phase in the model.
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1 1.2 1.4 1.6 1.8

µ

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

L
(2

-D
f) P(

ε 0)

L = 8
L = 10
L = 12

Figure 4. Finite-size scaling attempt of the ground state participation ratio with Df = 0.5. Again,
the inability to cross these curves at a common point indicates the lack of the transition. Disorder
averaging was done over the same configurations as in figure A3.

4. Conclusion

To summarize, we studied the large-N limit of the commensurate dirty boson theory and argued
that at weak disorder screening does not delocalize the ground state and consequently, that
there is no MI–SF transition in D = 2. Numerical results for the ground state energy and the
participation ratio that support this conclusion were provided.

Our conclusion agrees with the results of Kim and Wen [10] who found that disorder
is always relevant for D � 2 and could not find any stable critical points within their
renormalization scheme. The latter point may, in principle, be interpreted in three ways:
as a failure of the renormalization procedure, as the transition that is discontinuous, or that
there is no transition. Our findings support the third conclusion. On the other hand, we are
in disagreement with the recent study of Hastings [11], who considered the closely related
random spherical model and found the disorder to be marginally irrelevant in D = 2. At the
moment we do not fully understand what is the resolution of this disagreement, nor how the
ground state becomes extended in Hastings’ theory.

While we were mostly concerned with D = 2, the same perturbative procedure can be
repeated inD = 3. We found that the same diagram in figure 2(e) that led to the finite term for
W̃ in D = 3 vanishes logarithmically as the gap decreases. More importantly, in D = 3, the
Anderson localization problem allows a mobility edge, so the screened disorder need not go
all the way to zero for the ground state to delocalize. We would therefore expect that theory
(1) would have a MI–SF transition inD = 3, as apparently has been found in earlier numerical
calculations [15].

An important question is what our considerations imply for the physical casesN = 1, 2, 3
mentioned in the introduction. We believe that in D = 2, for N = 2 theory (1) does have a
transition and which is in the BG–SF universality class. This has been found in the dual theory
for the commensurate dirty bosons [3], in both D = 1 and D = 2 and in detailed numerical
calculations [5, 16]. The BG–SF transition is best understood in terms of disorder-induced
proliferation of topological defects and thus is very specific to having a complex (N = 2)
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order parameter. The same topological mechanism will not apply to the case of a random
quantum ferromagnet N = 3 and we conjecture that for N = 3 there may not be a gapless
phase in D = 2. On the same grounds, we expect that for the Ising case N = 1 the transition
again will exist [17].

Finally, we note the similarity between our problem and that of interacting disordered
fermions in D = 2 [18]. In the large-N limit the metallic phase in the fermionic problem
would correspond to an extended state at the Fermi level, as opposed to the extended ground
state in our problem. Nevertheless, one can show [19] that already to the lowest order in
disorder, screened disorder remains finite and thus the state should remain localized. We
would therefore expect that the fermionic version of action (1) also should have only the
localized phase in D = 2, at least in the large-N limit.
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Appendix A.

In this appendix, we provide the details of the calculations leading up to our main analytic
result (12). We begin by calculating the integrals (8)–(10). Using the standard Feynman
parameters [12] the integrals can be rewritten as

�(q) = /
( 3−D

2

)
(4π)

D+1
2

∫ 1

0
dt

1[
t (1 − t)q2 +"2

] 3−D
2

→


c

"

[
π

(
"

q

)
− 4

(
"

q

)2

+ O
((
"

q

)3
)]

q

"
→ ∞

c

"
q → 0

(A.1)

I1(k, 0) = 1

2

/
(

5−D
2

)
(4π)

D+1
2

∫ 1

0
dt

1[
t (1 − t)k2 +"2

] 5−D
2

→


c

4"3

[
4

(
"

k

)2

− 16

(
"

k

)4

+ O
((
"

k

)6
)]

k

"
→ ∞

c

4"3 k → 0.

(A.2)

where we assumedD = 2 in evaluating the limits. The diagrams in figures 2(c, d) will require
the evaluation of the following two limits of I2:

I2(k, 0, 0) = /
( 7−D

2

)
(4π)

D+1
2

∫ 1

0
dt

t (1 − t)[
t (1 − t)k2 +"2

] 7−D
2

→ 3c

4"5

[
8

3

(
"

k

)4

+ O
((
"

k

)6
)]

k

"
→ ∞ (A.3)
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I2(0, l, 0) = 1

2

/
( 7−D

2

)
(4π)

D+1
2

∫ 1

0
dt

(1 − t)2[
t (1 − t)l2 +"2

] 7−D
2

→ 3c

8"5

[
2

3

(
"

l

)2

+ O
((
"

l

)6
)]

l

"
→ ∞ (A.4)

where the limits p
"

→ ∞ and p → 0 are taken with fixed p and", respectively, and inD = 2.
We also define c ≡ /( 1

2 )/(4π)
3/2 = 1/(8π).

We can now evaluate the series (11) term by term. From the first-order term, in the limit
q → 0, we get

W̃ 1(q → 0) ≡ W

(1 + λ�(0))2
= W

λ2c2"
2. (A.5)

The contributions of order O(W 2) are shown diagrammatically in figure 2. Referring to this
figure, we label the corresponding terms generated in the expansion accordingly. To illustrate
our procedure, we will explicitly calculate the diagram shown in figure 2(e) arising from the
final term in (11). This term is

W̃ 2(e)(q) = λ2

{1 + λ�(q)}2

∫
d k d k′ I1(k, q)I1(k′,−q)

×〈Ṽ (k)Ṽ (q − k)Ṽ (k′)Ṽ (−q − k′)〉 (A.6)

where

〈Ṽ (k)Ṽ (q − k)Ṽ (k′)Ṽ (−q − k′)〉 = 2〈Ṽ (k)Ṽ (k′)〉〈Ṽ (q − k)Ṽ (−q − k′)〉 (A.7)

are the contractions which contribute to q �= 0. Using the definition

W̃ (q)δ(r) ≡ 〈Ṽ (q)Ṽ (−q + r)〉 (A.8)

and integrating over k′, (A.6) becomes

W̃ 2(e)(q) = 2λ2

{1 + λ�(q)}2

∫
d k I1(k, q)I1(−k,−q)W̃ (k)W̃(q − k)

→ 2λ2

{1 + λ�(0)}2

∫
d k I 2

1 (k, 0)W̃
2
(k) q → 0. (A.9)

We now replace W̃ (k) in (A.9) to first order in W to get

W̃ 2(e)(q → 0) = 2λ2W 2

{1 + λ�(0)}2

∫
d k

I 2
1 (k, 0)

{1 + λ�(k)}4

= 1

π5

(
W

λ2c2

)2

"2
∫ $/"

0
x dx

[
1 − 4

(
1
x2

)
+ O

(
1
x4

)]
[
1 − 4

π

( 1
x

)
+ O

(
1
x2

)] (A.10)

where the last line follows from substituting (A.1) and (A.2) into the previous line and making
the change of variable x = k/"; $ is the usual ultraviolet cut-off imposed by the lattice.
Expanding the denominator in (A.10) and integrating over x now yields the result

W̃ 2(e)(q → 0) = 1

2π5

(
W

λ2c2

)
"2

[(
$

"

)2

+
32

π

(
$

"

)
+ O

(
ln

(
$

"

))]
. (A.11)

It is important to note that (A.11) does not vanish as "→ 0.
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The calculation of the remaining terms now follows in a similar way. The diagrams
arising from the second term on the RHS of (11) are those shown in figures 2(a, b). These
give

W̃ 2(a)(q → 0) = 4

π4

(
W

λ2c2

)2

"2
[(
$

"

)
+ O

(
ln

(
"

$

))]
(A.12)

and

W̃ 2(b)(q → 0) = 1

4π3

(
W

λ2c2

)2

"2

[(
$

"

)2

+
16

π

(
$

"

)
+ O

(
ln

(
$

"

))]
. (A.13)

The third term on the RHS of (11) gives rise to the diagrams 2(c, d ). These give

W̃ 2(c)(q → 0) = − 1

4π3

(
W

λ2c2

)2

"2

[(
$

"

)2

+
16

π

(
$

"

)
+ O

(
ln

(
$

"

))]
(A.14)

and

W̃ 2(d)(q → 0) = − 2

π3

(
W

λ2c2

)2

"2
[
O
(

ln

(
$

"

))]
. (A.15)

Note that the two highest order terms in (A.14) cancel exactly with those in (A.13). Summing
the contributions (A.5) and (A.11)–(A.15), we then get the result quoted in (12). As mentioned,
the second-order term that remains constant when " → 0 comes entirely from the diagram
2(e).
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